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Laboratory work № 2.27 
 

DETERMINATION OF THE THERMAL CONDUCTIVITY COEFFICIENT OF 

SOLID 

 

Purpose of the work: study of the phenomenon of thermal conductivity and de-

termination of the thermal conductivity coefficient of various rocks. 
 

Theory and method of measurements 

 

Thermal conductivity is the process of transferring internal energy from more 

heated parts of the body to less heated parts. This process is carried out by chaotically 

moving body particles (atoms, molecules, electrons, etc.). Such heat transfer can occur 

in any bodies with a non-uniform temperature distribution, but the mechanism of heat 

transfer will depend on the state of aggregation of matter. 
In gases and liquids, it occurs through the collision of particles with each other, as well 

as through the diffusion of molecules and atoms. In metals, thermal conductivity  occurs as a 

result of the diffusion of free electrons and partially – elastic vibrations of the crystal lattice. In 

solid – dielectrics, mainly due to elastic vibrations of the crystal lattice. 

In this work, the thermal conductivity of a solid is investigated. 

Solids are divided into crystalline and amorphous. In crystals, atoms and mole-

cules occupy certain ordered positions in space, 

forming the so-called spatial crystal lattice. 

The forces that tend to keep atoms in equi-

librium can be approximately considered propor-

tional to their displacements. It is as if the atoms 

were bound by elastic springs. 

Thermal conductivity of crystals can by ex-

plained as follows. An increase in the vibration 

amplitude of particles in a hotter place due to the 

interaction forces causes an increase in the vibra-

tion amplitude of neighboring particles. Due to the 

bond between particles, heat tends to a uniform 

distribution over the volume of the crystal. This 

leads to equalization of temperatures. 

Let at two neighboring points of the bode the temperatures are equal to T and 

(T+dT), while the points are at a distance dx (Fig. 2). Then the ratio dT/dx will charac-

terize rate of temperature drop. It is called the temperature gradient. 

The basic law of thermal conductivity (Fouriet s law): the heat that passes 

through a layer of thickness dx, area S at the temperature difference at the boundaries of 

the layer dT, is  proportional to the gradient of temperature dT/dx, area S and time dt: 

dtS
dx

dT
dQ   .                                               (1) 
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Here λ is the coefficient of thermal conductivity (the modern name is thermal conductiv-

ity). The minus sign indicate that the energy transfer occurs in the direction of a lower 

temperature, in the direction opposite to the temper-

ature gradient. 

The temperature gradient is a vector charac-

terizing the rate of temperature change in space and 

directed towards the most rapid increase in tempera-

ture (Fig.2). If the temperature change only along 

some one direction, for example, the x-axis, then the 

numerical value of the gradient is simply the deriva-

tive 

 
dx

dT
Tgrad x  . 

If in formula (1) we take K 1dT , 
2m 1S , s 1t , m 1dx , then dQ . Therefore, thermal conductivity is a physical 

quantity that is numerically equal to the heat that  is transferred  through a unit area of a 

layer  with  a thickness of one unit per unit of time with a temperature difference of one 

degree. 

Rewhite  equation (1) differently 

S
dx

dT

dt

dQ
 .                                               (2) 

The expression dQ/dt is the thermal energy that 

is transferred through the surface of the sam- ple 

per unit of time, that is, the thermal power.  

You can maintain stationary, i.e. time- in-

variant thermal flux through a flat test sample. For 

this, it is necessary to supply a constant ther- mal 

power P to one of its surface (in Fig.3 – to the 

top). The lower surface of the sample will 

have a lower temperature T2 < T1. 

From (2) follows the equation for the 

thermal conductivity 

S
dx

dT

P









 .                                               (3) 

Since by definition 12 TTdT  , then 21 TTdT  . Replacing ldx  , we obtain the for-

mula for determining the thermal conductivity 

  ST

Pl

STT

Pl







21

 .                                               (4) 

 

 

 

 

Description of device 
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Laboratory device is made in the form of two units: working element and instru-

ment cluster.  

The working element is designed to create a station-

ary heat flow through the sample and measure the temper-

ature difference at the ends of the sample (Fig.4). The in-

strument unit is  designed to obtain a constant voltage on 

the heater, process information from the sensors, and pre-

sent it in digital form. 

A test sample of rock in the form of the thin disk 6 

is clamped with a screw 1 between the heater ( electric 

heater 3 + copper disk 5) and the refrigerator 7. 

The heater creates the heat flux. Refrigerator 7 is 

designed to remove the heat that has passed through the 

test sample and maintain the temperature of the lower sur-

face of the sample constant. 

The temperature on the upper and lower surface of the sample is measured by 

temperature sensors (thermocouples) 4 and 8.  

The working element is designed in such a way that almost all the heat generated 

by the heater flows through the plane-parallel sample perpendicular to its base area. 

Outside the element is thermally insulated (2 – thermal insulation). However, some of 

the heat escape through the thermal insulation, as well as the lateral surface of the disk 

due to thermal radiation.  

Accounting for heat loss gives a working formula for determining thermal conduc-

tivity 

TS

lPP






)( loss ,                                                  (5) 

Where Ploss – power losses. Power loss is proportional to the temperature difference, it 

is determined according to the graph attached to the device. 

 

 

№ 
P,  

W 

Рloss, 

W 

l, 

m 

S, 

m2 
ΔТ, К 

i, Вт/ 

(m∙К) 

<>, W/ 

( m∙К) 

Δi 

W/ 

(m∙К) 

S<> t,n 

Δ, 

W/ 

(m∙К) 

Е, 

% 

1             

2      

3      

 


